

Perceptual categorization of breath noises in speech pauses

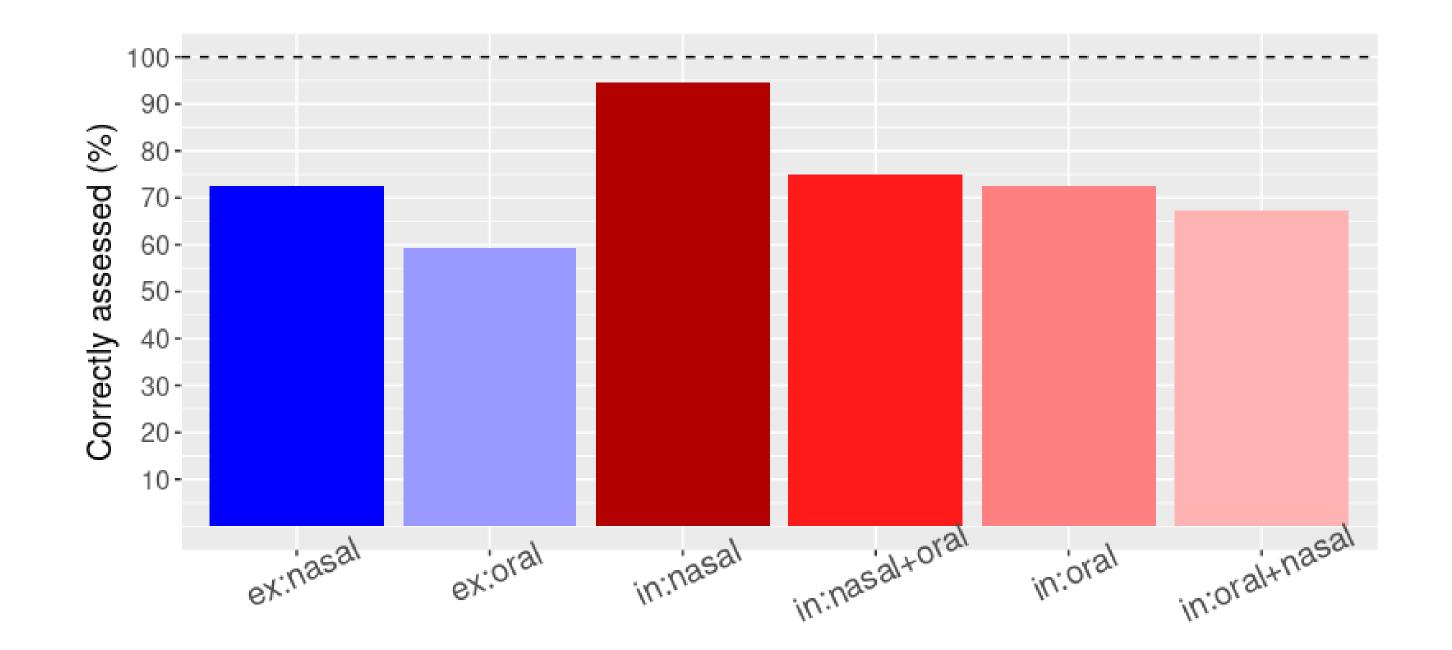
Raphael Werner, Jürgen Trouvain, Beeke Muhlack, Bernd Möbius {rwerner|trouvain|muhlack|moebius}@lst.uni-saarland.de

1

Introduction

- breathing possible in various ways and combinations
 - air flow direction (in- vs exhalation)
 - airway (oral, nasal, simultaneous oral-nasal, alternations beginning with oral or nasal)
- breath noise categorization by audio relevant for investigating respiration in detail [1-3], annotation, or their acoustic analysis
- research questions:
 - how reliable is the audio categorization of breath noises?
 - does context (+1sec before & after) help?
 - are phoneticians better than lay people?
 - are there differences by breath noise category?

2

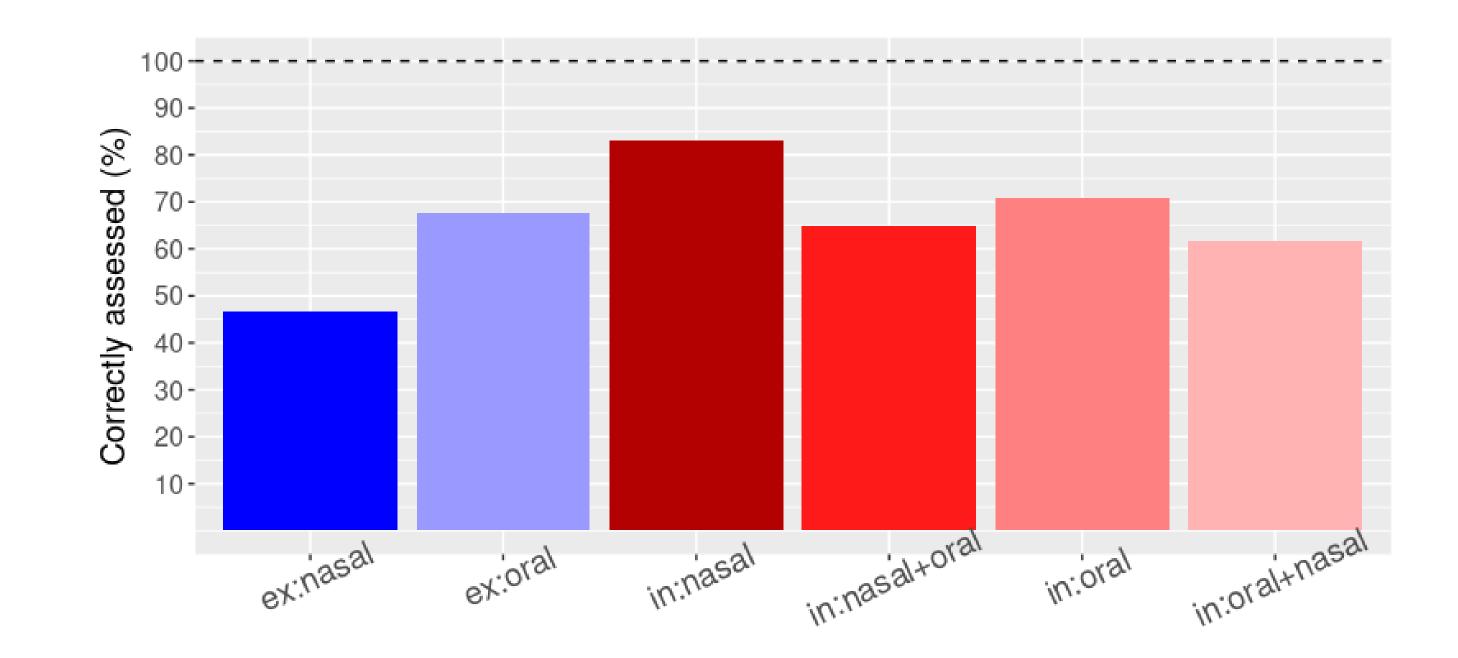

Methods

- 20 speakers (10m, 10f) from Dutch audio-visual corpus [4]
 → mouth opening as visual cue for oral contribution
- 812 breath noises annotated by 2 raters (inter-rater agreement on 20% subset \approx 92%, Cohen's κ = .88)
- 6 frequent types chosen:
 - exhalation: oral, nasal
 - inhalation: oral, nasal, oral+nasal, nasal+oral

3

Experiment 1

- 2 conditions (with/without 1 sec context); randomly selected 4 noises per type & condition
- 48 individual stimuli assessed by 8 phoneticians & 8 lay people via Labvanced



- overall correctly identified: 73.6 %
- with context (76.8%) > without context (70.3 %)
- phoneticians (74.0 %) ≈ lay people (73.2 %)
- in:nasal > in:nasal+oral, in:oral, ex:nasal > in:oral+nasal > ex:oral

4

Experiment 2

- stimuli matched for context → 2 lists of 24 breath noises to present via Labvanced
- 80 native German participants via Prolific; mean age 34 years (range 18–72)

- overall correctly identified: 65.8 %
- with context $(66.7 \%) \approx \text{without context } (65 \%)$
- ex:oral, in:nasal & in:oral significantly higher
- interactions: in:nasal & no-context and in:nasal+oral & no-context significantly higher

5

General Discussion & Conclusion

- no difference between phoneticians & lay people (Exp. 1)
- context effect not found in Exp. 2 → difference in Exp. 1 driven by individual stimuli?
- types: in:nasal high, exhalations low (in diff. experiments)
- differences in how often a type was given as answer (regardless of stimulus)
- interaction: no context beneficial for 2 types

- breath noises difficult to use in perception studies (low intensity; also in comparison to speech)
- *in:oral* may be simultaneous oral-nasal inhalations [5]
- studying airway usage difficult
 - reliable ground truth?
 - non-invasive, non-influential measurement?
- overall rate of around 2/3 correct → reliable/usable?

References

- [1] Trouvain, J., & Belz, M. (2019). Zur Annotation nicht-verbaler Vokalisierungen in Korpora gesprochener Sprache. ESSV 2019, 280-287.
- [2] Kienast, M., & Glitza, F. (2003). Respiratory sounds as an idiosyncratic feature in speaker recognition. ICPhS XV, 1607-1610.
- [3] Scobbie, J. M., Schaeffler, S., & Mennen, I. (2011). Audible aspects of speech preparation. ICPhS XVII, 1782-1785.
- [4] van Son, R. J. J. H et al. (2008). The IFADV corpus: A free dialog video corpus. Proceedings of the 6th International Conference on Language Resources and Evaluation, LREC 2008, 2(1), 501-508.
- [5] Lester, R. A. & Hoit, J. D. (2014). Nasal and oral inspiration during natural speech breathing, J. Speech, Lang. Hear. Res., vol. 57, no. 3, 734–742.